Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Placement of Data Centers to Support Power Distribution Networks Using Intelligent Algorithms with Economic Indicators (2512.21987v1)

Published 26 Dec 2025 in eess.SY

Abstract: Data centers are among the fastest growing electricity consumers and can impose severe voltage drops and feeder losses when connected to weak distribution networks. This paper formulates a techno economic siting problem in which each candidate data center site is mapped to a bus of the distribution network and is assumed to deploy on site renewable generation and power electronic interfaces, resulting in a controllable net active power injection equivalent to distributed generation. A mixed integer nonlinear optimization model is developed to jointly select the connection bus and size the DG capacity while respecting network operating limits. The objective combines three normalized terms including active power losses, a voltage deviation index capturing profile quality, and investment cost derived from location dependent land price and unit DG cost. To address the discrete continuous search space, an intelligent genetic algorithm is embedded in a multi scenario decision framework with adaptive weight tuning. Three stakeholder scenarios prioritize losses, voltage quality, or techno economic balance, and additional balanced scenarios are generated automatically until the optimal bus decision converges. A case study on the IEEE 33 bus radial system demonstrates the effectiveness of the approach. The converged design selects bus 14 with 1.10 MW DG, reducing total losses from 202.67 kW to 129.37 kW while improving the minimum bus voltage to 0.933 per unit at a moderate investment cost of 1.33 MUSD. The proposed framework provides an interpretable pathway to integrate economic indicators into distribution aware data center siting.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.