Unitary and Nonunitary A-D-E minimal models: Coset graph fusion algebras, defects, entropies, SREEs and dilogarithm identities (2512.21808v1)
Abstract: We consider both unitary and nonunitary A-D-E minimal models on the cylinder with topological defects along the non-contractible cycle of the cylinder. We define the coset graph $A \otimes G/\mathbb{Z}_2$ and argue that it encodes not only the (i) coset graph fusion algebra, but also (ii) the Affleck-Ludwig boundary g-factors; (iii) the defect g-factors (quantum dimensions) and (iv) the relative symmetry resolved entanglement entropy. By studying A-D-E restricted solid-on-solid models, we find that these boundary conformal field theory structures are also present on the lattice: defects (seams) are implemented by face weights with special values of the spectral parameter. Integrability allows the study of lattice transfer matrix T- and Y-system functional equations to reproduce the fusion algebra of defect lines. The effective central charges and conformal weights are expressed in terms of dilogarithms of the braid and bulk asymptotics of the Y-system expressed in terms of the quantum dimensions.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.