Papers
Topics
Authors
Recent
2000 character limit reached

Applications of synthetic financial data in portfolio and risk modeling (2512.21798v1)

Published 25 Dec 2025 in q-fin.ST and cs.AI

Abstract: Synthetic financial data offers a practical way to address the privacy and accessibility challenges that limit research in quantitative finance. This paper examines the use of generative models, in particular TimeGAN and Variational Autoencoders (VAEs), for creating synthetic return series that support portfolio construction, trading analysis, and risk modeling. Using historical daily returns from the S and P 500 as a benchmark, we generate synthetic datasets under comparable market conditions and evaluate them using statistical similarity metrics, temporal structure tests, and downstream financial tasks. The study shows that TimeGAN produces synthetic data with distributional shapes, volatility patterns, and autocorrelation behaviour that are close to those observed in real returns. When applied to mean-variance portfolio optimization, the resulting synthetic datasets lead to portfolio weights, Sharpe ratios, and risk levels that remain close to those obtained from real data. The VAE provides more stable training but tends to smooth extreme market movements, which affects risk estimation. Finally, the analysis supports the use of synthetic datasets as substitutes for real financial data in portfolio analysis and risk simulation, particularly when models are able to capture temporal dynamics. Synthetic data therefore provides a privacy-preserving, cost-effective, and reproducible tool for financial experimentation and model development.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.