Papers
Topics
Authors
Recent
2000 character limit reached

Thermodynamic Characterizations of Singular Bayesian Models: Specific Heat, Susceptibility, and Entropy Flow in Posterior Geometry (2512.21411v1)

Published 24 Dec 2025 in math.ST and stat.ML

Abstract: Singular learning theory (SLT) \citep{watanabe2009algebraic,watanabe2018mathematical} provides a rigorous asymptotic framework for Bayesian models with non-identifiable parameterizations, yet the statistical meaning of its second-order invariant, the \emph{singular fluctuation}, has remained unclear. In this work, we show that singular fluctuation admits a precise and natural interpretation as a \emph{specific heat}: the second derivative of the Bayesian free energy with respect to temperature. Equivalently, it measures the posterior variance of the log-likelihood observable under the tempered Gibbs posterior. We further introduce a collection of related thermodynamic quantities, including entropy flow, prior susceptibility, and cross-susceptibility, that together provide a detailed geometric diagnosis of singular posterior structure. Through extensive numerical experiments spanning discrete symmetries, boundary singularities, continuous gauge freedoms, and piecewise (ReLU) models, we demonstrate that these thermodynamic signatures cleanly distinguish singularity types, exhibit stable finite-sample behavior, and reveal phase-transition--like phenomena as temperature varies. We also show empirically that the widely used WAIC estimator \citep{watanabe2010asymptotic, watanabe2013widely} is exactly twice the thermodynamic specific heat at unit temperature, clarifying its robustness in singular models.Our results establish a concrete bridge between singular learning theory and statistical mechanics, providing both theoretical insight and practical diagnostics for modern Bayesian models.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 2 likes about this paper.