Papers
Topics
Authors
Recent
2000 character limit reached

An Allele-Centric Pan-Graph-Matrix Representation for Scalable Pangenome Analysis

Published 24 Dec 2025 in q-bio.GN, cs.DB, and cs.DS | (2512.21320v1)

Abstract: Population-scale pangenome analysis increasingly requires representations that unify single-nucleotide and structural variation while remaining scalable across large cohorts. Existing formats are typically sequence-centric, path-centric, or sample-centric, and often obscure population structure or fail to exploit carrier sparsity. We introduce the H1 pan-graph-matrix, an allele-centric representation that encodes exact haplotype membership using adaptive per-allele compression. By treating alleles as first-class objects and selecting optimal encodings based on carrier distribution, H1 achieves near-optimal storage across both common and rare variants. We further introduce H2, a path-centric dual representation derived from the same underlying allele-haplotype incidence information that restores explicit haplotype ordering while remaining exactly equivalent in information content. Using real human genome data, we show that this representation yields substantial compression gains, particularly for structural variants, while remaining equivalent in information content to pangenome graphs. H1 provides a unified, population-aware foundation for scalable pangenome analysis and downstream applications such as rare-variant interpretation and drug discovery.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.