Win rates at first-passage times for biased simple random walks
Abstract: We study the win rate $R_{N_d}/N_d$ of a biased simple random walk $S_n$ on $\mathbb{Z}$ at the first-passage time $N_d=\inf{n\ge 0:S_n=d}$, with $p=P[X_1=+1]\in[1/2,1)$. Using generating-function techniques and integral representations, we derive explicit formulas for the expectation and variance of $R_{N_d}/N_d$ along with monotonicity properties in the threshold $d$ and the bias $p$. We also provide closed-form expressions and use them to design unbiased coin-flipping estimators of $π$ based on first-passage sampling; the resulting schemes illustrate how biasing the coin can dramatically improve both approximation accuracy and computational cost.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.