Papers
Topics
Authors
Recent
2000 character limit reached

CoTDeceptor:Adversarial Code Obfuscation Against CoT-Enhanced LLM Code Agents (2512.21250v1)

Published 24 Dec 2025 in cs.CR and cs.MA

Abstract: LLM-based code agents(e.g., ChatGPT Codex) are increasingly deployed as detector for code review and security auditing tasks. Although CoT-enhanced LLM vulnerability detectors are believed to provide improved robustness against obfuscated malicious code, we find that their reasoning chains and semantic abstraction processes exhibit exploitable systematic weaknesses.This allows attackers to covertly embed malicious logic, bypass code review, and propagate backdoored components throughout real-world software supply chains.To investigate this issue, we present CoTDeceptor, the first adversarial code obfuscation framework targeting CoT-enhanced LLM detectors. CoTDeceptor autonomously constructs evolving, hard-to-reverse multi-stage obfuscation strategy chains that effectively disrupt CoT-driven detection logic.We obtained malicious code provided by security enterprise, experimental results demonstrate that CoTDeceptor achieves stable and transferable evasion performance against state-of-the-art LLMs and vulnerability detection agents. CoTDeceptor bypasses 14 out of 15 vulnerability categories, compared to only 2 bypassed by prior methods. Our findings highlight potential risks in real-world software supply chains and underscore the need for more robust and interpretable LLM-powered security analysis systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.