Papers
Topics
Authors
Recent
2000 character limit reached

Coupled-wire construction of non-Abelian higher-order topological phases

Published 24 Dec 2025 in cond-mat.mes-hall and quant-ph | (2512.21179v1)

Abstract: Non-Abelian topological charges (NATCs), characterized by their noncommutative algebra, offer a framework for describing multigap topological phases beyond conventional Abelian invariants. While higher-order topological phases (HOTPs) host boundary states at corners or hinges, their characterization has largely relied on Abelian invariants such as winding and Chern numbers. Here, we propose a coupled-wire scheme of constructing non-Abelian HOTPs and analyze a non-Abelian second-order topological insulator as its minimal model. The resulting Hamiltonian supports hybridized corner modes, protected by parity-time-reversal plus sublattice symmetries and described by a topological vector that unites a non-Abelian quaternion charge with an Abelian winding number. Corner states emerge only when both invariants are nontrivial, whereas weak topological edge states of non-Abelian origins arise when the quaternion charge is nontrivial, enriching the bulk-edge-corner correspondence. The system further exhibits both non-Abelian and Abelian topological phase transitions, providing a unified platform that bridges these two distinct topological classes. Our work extends the understanding of HOTPs into non-Abelian regimes and suggests feasible experimental realizations in synthetic quantum systems, such as photonic or acoustic metamaterials.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.