Papers
Topics
Authors
Recent
2000 character limit reached

Granular-ball Guided Masking: Structure-aware Data Augmentation (2512.21011v1)

Published 24 Dec 2025 in cs.CV

Abstract: Deep learning models have achieved remarkable success in computer vision, but they still rely heavily on large-scale labeled data and tend to overfit when data are limited or distributions shift. Data augmentation, particularly mask-based information dropping, can enhance robustness by forcing models to explore complementary cues; however, existing approaches often lack structural awareness and may discard essential semantics. We propose Granular-ball Guided Masking (GBGM), a structure-aware augmentation strategy guided by Granular-ball Computing (GBC). GBGM adaptively preserves semantically rich, structurally important regions while suppressing redundant areas through a coarse-to-fine hierarchical masking process, producing augmentations that are both representative and discriminative. Extensive experiments on multiple benchmarks demonstrate consistent improvements in classification accuracy and masked image reconstruction, confirming the effectiveness and broad applicability of the proposed method. Simple and model-agnostic, it integrates seamlessly into CNNs and Vision Transformers and provides a new paradigm for structure-aware data augmentation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.