Papers
Topics
Authors
Recent
2000 character limit reached

Leveraging Overfitting for Low-Complexity and Modality-Agnostic Joint Source-Channel Coding

Published 24 Dec 2025 in eess.IV and cs.IT | (2512.20981v1)

Abstract: This paper introduces Implicit-JSCC, a novel overfitted joint source-channel coding paradigm that directly optimizes channel symbols and a lightweight neural decoder for each source. This instance-specific strategy eliminates the need for training datasets or pre-trained models, enabling a storage-free, modality-agnostic solution. As a low-complexity alternative, Implicit-JSCC achieves efficient image transmission with around 1000x lower decoding complexity, using as few as 607 model parameters and 641 multiplications per pixel. This overfitted design inherently addresses source generalizability and achieves state-of-the-art results in the high SNR regimes, underscoring its promise for future communication systems, especially streaming scenarios where one-time offline encoding supports multiple online decoding.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.