Papers
Topics
Authors
Recent
Search
2000 character limit reached

Input-Adaptive Visual Preprocessing for Efficient Fast Vision-Language Model Inference

Published 23 Dec 2025 in cs.CV | (2512.20839v1)

Abstract: Vision-LLMs (VLMs) have demonstrated strong performance on multimodal reasoning tasks, but their deployment remains challenging due to high inference latency and computational cost, particularly when processing high-resolution visual inputs. While recent architectures such as FastVLM improve efficiency through optimized vision encoders, existing pipelines still rely on static visual preprocessing, leading to redundant computation for visually simple inputs. In this work, we propose an adaptive visual preprocessing method that dynamically adjusts input resolution and spatial coverage based on image content characteristics. The proposed approach combines content-aware image analysis, adaptive resolution selection, and content-aware cropping to reduce visual redundancy prior to vision encoding. Importantly, the method is integrated with FastVLM without modifying its architecture or requiring retraining. We evaluate the proposed method on a subset of the DocVQA dataset in an inference-only setting, focusing on efficiency-oriented metrics. Experimental results show that adaptive preprocessing reduces per-image inference time by over 50\%, lowers mean full generation time, and achieves a consistent reduction of more than 55\% in visual token count compared to the baseline pipeline. These findings demonstrate that input-aware preprocessing is an effective and lightweight strategy for improving deployment-oriented efficiency of vision-LLMs. To facilitate reproducibility, our implementation is provided as a fork of the FastVLM repository, incorporating the files for the proposed method, and is available at https://github.com/kmdavidds/mlfastlm.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.