Repurposing Video Diffusion Transformers for Robust Point Tracking (2512.20606v1)
Abstract: Point tracking aims to localize corresponding points across video frames, serving as a fundamental task for 4D reconstruction, robotics, and video editing. Existing methods commonly rely on shallow convolutional backbones such as ResNet that process frames independently, lacking temporal coherence and producing unreliable matching costs under challenging conditions. Through systematic analysis, we find that video Diffusion Transformers (DiTs), pre-trained on large-scale real-world videos with spatio-temporal attention, inherently exhibit strong point tracking capability and robustly handle dynamic motions and frequent occlusions. We propose DiTracker, which adapts video DiTs through: (1) query-key attention matching, (2) lightweight LoRA tuning, and (3) cost fusion with a ResNet backbone. Despite training with 8 times smaller batch size, DiTracker achieves state-of-the-art performance on challenging ITTO benchmark and matches or outperforms state-of-the-art models on TAP-Vid benchmarks. Our work validates video DiT features as an effective and efficient foundation for point tracking.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.