Papers
Topics
Authors
Recent
2000 character limit reached

Avoiding the Price of Adaptivity: Inference in Linear Contextual Bandits via Stability

Published 23 Dec 2025 in stat.ML, cs.IT, cs.LG, and math.ST | (2512.20368v1)

Abstract: Statistical inference in contextual bandits is complicated by the adaptive, non-i.i.d. nature of the data. A growing body of work has shown that classical least-squares inference may fail under adaptive sampling, and that constructing valid confidence intervals for linear functionals of the model parameter typically requires paying an unavoidable inflation of order $\sqrt{d \log T}$. This phenomenon -- often referred to as the price of adaptivity -- highlights the inherent difficulty of reliable inference under general contextual bandit policies. A key structural property that circumvents this limitation is the \emph{stability} condition of Lai and Wei, which requires the empirical feature covariance to concentrate around a deterministic limit. When stability holds, the ordinary least-squares estimator satisfies a central limit theorem, and classical Wald-type confidence intervals -- designed for i.i.d. data -- become asymptotically valid even under adaptation, \emph{without} incurring the $\sqrt{d \log T}$ price of adaptivity. In this paper, we propose and analyze a penalized EXP4 algorithm for linear contextual bandits. Our first main result shows that this procedure satisfies the Lai--Wei stability condition and therefore admits valid Wald-type confidence intervals for linear functionals. Our second result establishes that the same algorithm achieves regret guarantees that are minimax optimal up to logarithmic factors, demonstrating that stability and statistical efficiency can coexist within a single contextual bandit method. Finally, we complement our theory with simulations illustrating the empirical normality of the resulting estimators and the sharpness of the corresponding confidence intervals.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.