Papers
Topics
Authors
Recent
2000 character limit reached

Critical Hermitian matrix model with external source and Boussinesq hierarchy (2512.20343v1)

Published 23 Dec 2025 in math-ph, math.CA, math.PR, and nlin.SI

Abstract: We consider the random Hermitian matrix model of dimension $2n$, with external source, defined by the probability density function \begin{equation*} \frac{1}{Z_{2n}} \lvert \det(M) \rvertα e{-2n\mathrm{Tr} (V(M) - AM)}, \quad V(x) = \frac{x4}{4} - t\frac{x2}{2}, \end{equation*} where the external source $A$ has two eigenvalues $\pm a$ of equal multiplicity. We investigate the limiting local statistics of the eigenvalues of $M$ around $0$ in certain critical regimes as $n \to \infty$. When the parameters $t$ and $a$ lie on a critical curve along which the limiting mean eigenvalue density vanishes as $|x|{1/3}$, the double scaling limit of the correlation kernel is constructed from functions associated with the Boussinesq equation. This new limiting kernel reduces to the classical Pearcey kernel when $α= 0$. Furthermore, in the multi-critical case where the limiting mean eigenvalue density vanishes as $|x|{5/3}$, the limiting kernel is built from the second member of the Boussinesq hierarchy. We derive the results by transforming the random matrix model into biorthogonal ensembles that are analogous to the Muttalib-Borodin ensemble, and then analyzing its asymptotic behavior via a vector Riemann-Hilbert problem.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.