Papers
Topics
Authors
Recent
2000 character limit reached

Degradation-Aware Metric Prompting for Hyperspectral Image Restoration (2512.20251v1)

Published 23 Dec 2025 in cs.CV and eess.IV

Abstract: Unified hyperspectral image (HSI) restoration aims to recover various degraded HSIs using a single model, offering great practical value. However, existing methods often depend on explicit degradation priors (e.g., degradation labels) as prompts to guide restoration, which are difficult to obtain due to complex and mixed degradations in real-world scenarios. To address this challenge, we propose a Degradation-Aware Metric Prompting (DAMP) framework. Instead of relying on predefined degradation priors, we design spatial-spectral degradation metrics to continuously quantify multi-dimensional degradations, serving as Degradation Prompts (DP). These DP enable the model to capture cross-task similarities in degradation distributions and enhance shared feature learning. Furthermore, we introduce a Spatial-Spectral Adaptive Module (SSAM) that dynamically modulates spatial and spectral feature extraction through learnable parameters. By integrating SSAM as experts within a Mixture-of-Experts architecture, and using DP as the gating router, the framework enables adaptive, efficient, and robust restoration under diverse, mixed, or unseen degradations. Extensive experiments on natural and remote sensing HSI datasets show that DAMP achieves state-of-the-art performance and demonstrates exceptional generalization capability. Code is publicly available at https://github.com/MiliLab/DAMP.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.