Papers
Topics
Authors
Recent
2000 character limit reached

MemR$^3$: Memory Retrieval via Reflective Reasoning for LLM Agents (2512.20237v1)

Published 23 Dec 2025 in cs.AI

Abstract: Memory systems have been designed to leverage past experiences in LLM agents. However, many deployed memory systems primarily optimize compression and storage, with comparatively less emphasis on explicit, closed-loop control of memory retrieval. From this observation, we build memory retrieval as an autonomous, accurate, and compatible agent system, named MemR$3$, which has two core mechanisms: 1) a router that selects among retrieve, reflect, and answer actions to optimize answer quality; 2) a global evidence-gap tracker that explicitly renders the answering process transparent and tracks the evidence collection process. This design departs from the standard retrieve-then-answer pipeline by introducing a closed-loop control mechanism that enables autonomous decision-making. Empirical results on the LoCoMo benchmark demonstrate that MemR$3$ surpasses strong baselines on LLM-as-a-Judge score, and particularly, it improves existing retrievers across four categories with an overall improvement on RAG (+7.29%) and Zep (+1.94%) using GPT-4.1-mini backend, offering a plug-and-play controller for existing memory stores.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.