Papers
Topics
Authors
Recent
Search
2000 character limit reached

FastMPS: Revisit Data Parallel in Large-scale Matrix Product State Sampling

Published 23 Dec 2025 in cs.DC | (2512.20064v1)

Abstract: Matrix Product State (MPS) is a versatile tensor network representation widely applied in quantum physics, quantum chemistry, and machine learning, etc. MPS sampling serves as a critical fundamental operation in these fields. As the problems become more complex, the scale of MPS is rapidly increasing. Traditional data parallelism is limited by memory and heavy I/O in large-scale MPS. Model parallelism that can handle large-scale MPS imposes rigid process bindings and lacks scalability. This work proposes Fast-MPS, a multi-level parallel framework for scalable MPS sampling. Our design combines data parallelism across samples with tensor parallelism along bond dimensions. We eliminate memory and I/O pressure through compression and overlapping, and revive data parallel in large-scale MPS sampling. We evaluate our approach on Gaussian Boson Sampling, a representative and demanding application. Fast-MPS achieves over 10x speedup compared to existing simulators, scales to thousands of processes, and enables simulations with 8,176 sites and bond dimension chi = 104, significantly outperforming the state of the art. Fast-MPS has demonstrated great potential in high-performance tensor network applications.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.