MAPI-GNN: Multi-Activation Plane Interaction Graph Neural Network for Multimodal Medical Diagnosis (2512.20026v1)
Abstract: Graph neural networks are increasingly applied to multimodal medical diagnosis for their inherent relational modeling capabilities. However, their efficacy is often compromised by the prevailing reliance on a single, static graph built from indiscriminate features, hindering the ability to model patient-specific pathological relationships. To this end, the proposed Multi-Activation Plane Interaction Graph Neural Network (MAPI-GNN) reconstructs this single-graph paradigm by learning a multifaceted graph profile from semantically disentangled feature subspaces. The framework first uncovers latent graph-aware patterns via a multi-dimensional discriminator; these patterns then guide the dynamic construction of a stack of activation graphs; and this multifaceted profile is finally aggregated and contextualized by a relational fusion engine for a robust diagnosis. Extensive experiments on two diverse tasks, comprising over 1300 patient samples, demonstrate that MAPI-GNN significantly outperforms state-of-the-art methods.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.