Papers
Topics
Authors
Recent
2000 character limit reached

Energy-Efficient Multi-LLM Reasoning for Binary-Free Zero-Day Detection in IoT Firmware (2512.19945v1)

Published 23 Dec 2025 in cs.CR

Abstract: Securing Internet of Things (IoT) firmware remains difficult due to proprietary binaries, stripped symbols, heterogeneous architectures, and limited access to executable code. Existing analysis methods, such as static analysis, symbolic execution, and fuzzing, depend on binary visibility and functional emulation, making them unreliable when firmware is encrypted or inaccessible. To address this limitation, we propose a binary-free, architecture-agnostic solution that estimates the likelihood of conceptual zero-day vulnerabilities using only high-level descriptors. The approach integrates a tri-LLM reasoning architecture combining a LLaMA-based configuration interpreter, a DeepSeek-based structural abstraction analyzer, and a GPT-4o semantic fusion model. The solution also incorporates LLM computational signatures, including latency patterns, uncertainty markers, and reasoning depth indicators, as well as an energy-aware symbolic load model, to enhance interpretability and operational feasibility. In addition, we formally derive the mathematical foundations of the reasoning pipeline, establishing monotonicity, divergence, and energy-risk coupling properties that theoretically justify the model's behavior. Simulation-based evaluation reveals that high exposure conditions increase the predicted zero-day likelihood by 20 to 35 percent across models, with GPT-4o demonstrating the strongest cross-layer correlations and the highest sensitivity. Energy and divergence metrics significantly predict elevated risk (p < 0.01), reinforcing the effectiveness of the proposed reasoning framework.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.