Papers
Topics
Authors
Recent
2000 character limit reached

A Complete Characterization of Pythagorean Hodograph Preserving Mappings (2512.19587v1)

Published 22 Dec 2025 in math.DG, math.CV, and math.MG

Abstract: We fully characterize the mappings $Φ$ that send every Pythagorean-hodograph (PH) curve to a PH curve. We prove that in any dimension, such mappings are precisely the conformal functions whose dilation is the square of a real rational function. In the planar case, this implies (up to conjugation) that $\partialΦ/\partial z = Ψ{2}$, where $Ψ$ is meromorphic and satisfies $\operatorname{Res}(Ψ{2}) = 0$ at every pole. In higher dimensions, PH preservation forces $Φ$ to be a conformal map; for $n \ge 3$, Liouville's theorem then implies that any local diffeomorphism with this property is (anti-)Möbius. These results subsume the previously known ``(scaled) PH-preserving'' constructions of mappings $\mathbb{R}2 \to \mathbb{R}3$ and align with Ueda's conformal viewpoint on isothermal and spherical geometries. At the level of examples, we demonstrate how PH-preserving mappings relate to the construction of rational PH curves and minimal surfaces.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube