Papers
Topics
Authors
Recent
2000 character limit reached

Towards Minimal Fine-Tuning of VLMs (2512.19219v1)

Published 22 Dec 2025 in cs.CV and cs.AI

Abstract: We introduce Image-LoRA, a lightweight parameter efficient fine-tuning (PEFT) recipe for transformer-based vision-LLMs (VLMs). Image-LoRA applies low-rank adaptation only to the value path of attention layers within the visual-token span, reducing adapter-only training FLOPs roughly in proportion to the visual-token fraction. We further adapt only a subset of attention heads, selected using head influence scores estimated with a rank-1 Image-LoRA, and stabilize per-layer updates via selection-size normalization. Across screen-centric grounding and referring benchmarks spanning text-heavy to image-heavy regimes, Image-LoRA matches or closely approaches standard LoRA accuracy while using fewer trainable parameters and lower adapter-only training FLOPs. The method also preserves the pure-text reasoning performance of VLMs before and after fine-tuning, as further shown on GSM8K.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.