Papers
Topics
Authors
Recent
2000 character limit reached

SAP: Syntactic Attention Pruning for Transformer-based Language Models (2512.19125v1)

Published 22 Dec 2025 in cs.CL and cs.LG

Abstract: This paper introduces Syntactic Attention Pruning (SAP), a novel method for effectively pruning attention heads in Transformer models. Unlike conventional approaches that rely solely on mathematical analysis of model weights and activations, SAP incorporates both the syntactic structure and attention patterns of sentences to guide the pruning process. By leveraging these linguistic features, SAP not only achieves performance comparable to state-of-the-art methods but also enhances the interpretability of model behavior. To further improve robustness, we propose Candidate Filtering (CF), a mechanism that prioritizes heads based on their contribution to model performance, mitigating degradation during pruning. Experimental results indicate that SAP effectively preserves critical heads of a high density of strong attention values, outperforming existing head pruning strategies in retrain-free settings. These findings position SAP as a promising foundation for a new direction in model compression research, offering high flexibility for pruning across all transformer-based LLMs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.