DeepQuantum: A PyTorch-based Software Platform for Quantum Machine Learning and Photonic Quantum Computing (2512.18995v1)
Abstract: We introduce DeepQuantum, an open-source, PyTorch-based software platform for quantum machine learning and photonic quantum computing. This AI-enhanced framework enables efficient design and execution of hybrid quantum-classical models and variational quantum algorithms on both CPUs and GPUs. For photonic quantum computing, DeepQuantum implements Fock, Gaussian, and Bosonic backends, catering to different simulation needs. Notably, it is the first framework to realize closed-loop integration of three paradigms of quantum computing, namely quantum circuits, photonic quantum circuits, and measurement-based quantum computing, thereby enabling robust support for both specialized and universal photonic quantum algorithm design. Furthermore, DeepQuantum supports large-scale simulations based on tensor network techniques and a distributed parallel computing architecture. We demonstrate these capabilities through comprehensive benchmarks and illustrative examples. With its unique features, DeepQuantum is intended to be a powerful platform for both AI for Quantum and Quantum for AI.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.