Papers
Topics
Authors
Recent
2000 character limit reached

DeepQuantum: A PyTorch-based Software Platform for Quantum Machine Learning and Photonic Quantum Computing (2512.18995v1)

Published 22 Dec 2025 in quant-ph

Abstract: We introduce DeepQuantum, an open-source, PyTorch-based software platform for quantum machine learning and photonic quantum computing. This AI-enhanced framework enables efficient design and execution of hybrid quantum-classical models and variational quantum algorithms on both CPUs and GPUs. For photonic quantum computing, DeepQuantum implements Fock, Gaussian, and Bosonic backends, catering to different simulation needs. Notably, it is the first framework to realize closed-loop integration of three paradigms of quantum computing, namely quantum circuits, photonic quantum circuits, and measurement-based quantum computing, thereby enabling robust support for both specialized and universal photonic quantum algorithm design. Furthermore, DeepQuantum supports large-scale simulations based on tensor network techniques and a distributed parallel computing architecture. We demonstrate these capabilities through comprehensive benchmarks and illustrative examples. With its unique features, DeepQuantum is intended to be a powerful platform for both AI for Quantum and Quantum for AI.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.