Papers
Topics
Authors
Recent
2000 character limit reached

Delta-LLaVA: Base-then-Specialize Alignment for Token-Efficient Vision-Language Models (2512.18910v1)

Published 21 Dec 2025 in cs.CV

Abstract: Multimodal LLMs (MLLMs) combine visual and textual representations to enable rich reasoning capabilities. However, the high computational cost of processing dense visual tokens remains a major bottleneck. A critical component in this pipeline is the visual projector, which bridges the vision encoder and the LLM. Standard designs often employ a simple multi-layer perceptron for direct token mapping, but this approach scales poorly with high-resolution inputs, introducing significant redundancy. We present Delta-LLaVA, a token-efficient projector that employs a low-rank DeltaProjection to align multi-level vision features into a compact subspace before further interaction. On top of this base alignment, lightweight Transformer blocks act as specialization layers, capturing both global and local structure under constrained token budgets. Extensive experiments and ablations demonstrate that this base-then-specialize design yields consistent gains across multiple benchmarks with only 144 tokens, highlighting the importance of token formation prior to scaling interaction capacity. With Delta-LLaVA, inference throughput improves by up to 55%, while end-to-end training accelerates by nearly 4-5x in pretraining and over 1.5x in finetuning, highlighting the dual benefits of our design in both efficiency and scalability.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.