Papers
Topics
Authors
Recent
2000 character limit reached

AMLID: An Adaptive Multispectral Landmine Identification Dataset for Drone-Based Detection

Published 21 Dec 2025 in cs.CV | (2512.18738v1)

Abstract: Landmines remain a persistent humanitarian threat, with an estimated 110 million mines deployed across 60 countries, claiming approximately 26,000 casualties annually. Current detection methods are hazardous, inefficient, and prohibitively expensive. We present the Adaptive Multispectral Landmine Identification Dataset (AMLID), the first open-source dataset combining Red-Green-Blue (RGB) and Long-Wave Infrared (LWIR) imagery for Unmanned Aerial Systems (UAS)-based landmine detection. AMLID comprises of 12,078 labeled images featuring 21 globally deployed landmine types across anti-personnel and anti-tank categories in both metal and plastic compositions. The dataset spans 11 RGB-LWIR fusion levels, four sensor altitudes, two seasonal periods, and three daily illumination conditions. By providing comprehensive multispectral coverage across diverse environmental variables, AMLID enables researchers to develop and benchmark adaptive detection algorithms without requiring access to live ordnance or expensive data collection infrastructure, thereby democratizing humanitarian demining research.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.