Papers
Topics
Authors
Recent
2000 character limit reached

SmartSight: Mitigating Hallucination in Video-LLMs Without Compromising Video Understanding via Temporal Attention Collapse

Published 21 Dec 2025 in cs.CV | (2512.18671v1)

Abstract: Despite Video LLMs having rapidly advanced in recent years, perceptual hallucinations pose a substantial safety risk, which severely restricts their real-world applicability. While several methods for hallucination mitigation have been proposed, they often compromise the model's capacity for video understanding and reasoning. In this work, we propose SmartSight, a pioneering step to address this issue in a training-free manner by leveraging the model's own introspective capabilities. Specifically, SmartSight generates multiple candidate responses to uncover low-hallucinated outputs that are often obscured by standard greedy decoding. It assesses the hallucination of each response using the Temporal Attention Collapse score, which measures whether the model over-focuses on trivial temporal regions of the input video when generating the response. To improve efficiency, SmartSight identifies the Visual Attention Vanishing point, enabling more accurate hallucination estimation and early termination of hallucinated responses, leading to a substantial reduction in decoding cost. Experiments show that SmartSight substantially lowers hallucinations for Qwen2.5-VL-7B by 10.59% on VRIPT-HAL, while simultaneously enhancing video understanding and reasoning, boosting performance on VideoMMMU by up to 8.86%. These results highlight SmartSight's effectiveness in improving the reliability of open-source Video-LLMs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.