Papers
Topics
Authors
Recent
2000 character limit reached

Measuring the Impact of Student Gaming Behaviors on Learner Modeling

Published 21 Dec 2025 in cs.CY | (2512.18659v1)

Abstract: The expansion of large-scale online education platforms has made vast amounts of student interaction data available for knowledge tracing (KT). KT models estimate students' concept mastery from interaction data, but their performance is sensitive to input data quality. Gaming behaviors, such as excessive hint use, may misrepresent students' knowledge and undermine model reliability. However, systematic investigations of how different types of gaming behaviors affect KT remain scarce, and existing studies rely on costly manual analysis that does not capture behavioral diversity. In this study, we conceptualize gaming behaviors as a form of data poisoning, defined as the deliberate submission of incorrect or misleading interaction data to corrupt a model's learning process. We design Data Poisoning Attacks (DPAs) to simulate diverse gaming patterns and systematically evaluate their impact on KT model performance. Moreover, drawing on advances in DPA detection, we explore unsupervised approaches to enhance the generalizability of gaming behavior detection. We find that KT models' performance tends to decrease especially in response to random guess behaviors. Our findings provide insights into the vulnerabilities of KT models and highlight the potential of adversarial methods for improving the robustness of learning analytics systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.