Papers
Topics
Authors
Recent
2000 character limit reached

SD2AIL: Adversarial Imitation Learning from Synthetic Demonstrations via Diffusion Models (2512.18583v1)

Published 21 Dec 2025 in cs.LG and cs.RO

Abstract: Adversarial Imitation Learning (AIL) is a dominant framework in imitation learning that infers rewards from expert demonstrations to guide policy optimization. Although providing more expert demonstrations typically leads to improved performance and greater stability, collecting such demonstrations can be challenging in certain scenarios. Inspired by the success of diffusion models in data generation, we propose SD2AIL, which utilizes synthetic demonstrations via diffusion models. We first employ a diffusion model in the discriminator to generate synthetic demonstrations as pseudo-expert data that augment the expert demonstrations. To selectively replay the most valuable demonstrations from the large pool of (pseudo-) expert demonstrations, we further introduce a prioritized expert demonstration replay strategy (PEDR). The experimental results on simulation tasks demonstrate the effectiveness and robustness of our method. In particular, in the Hopper task, our method achieves an average return of 3441, surpassing the state-of-the-art method by 89. Our code will be available at https://github.com/positron-lpc/SD2AIL.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.