Papers
Topics
Authors
Recent
2000 character limit reached

PlantDiseaseNet-RT50: A Fine-tuned ResNet50 Architecture for High-Accuracy Plant Disease Detection Beyond Standard CNNs (2512.18500v1)

Published 20 Dec 2025 in cs.CV, cs.AI, and cs.LG

Abstract: Plant diseases pose a significant threat to agricultural productivity and global food security, accounting for 70-80% of crop losses worldwide. Traditional detection methods rely heavily on expert visual inspection, which is time-consuming, labour-intensive, and often impractical for large-scale farming operations. In this paper, we present PlantDiseaseNet-RT50, a novel fine-tuned deep learning architecture based on ResNet50 for automated plant disease detection. Our model features strategically unfrozen layers, a custom classification head with regularization mechanisms, and dynamic learning rate scheduling through cosine decay. Using a comprehensive dataset of distinct plant disease categories across multiple crop species, PlantDiseaseNet-RT50 achieves exceptional performance with approximately 98% accuracy, precision, and recall. Our architectural modifications and optimization protocol demonstrate how targeted fine-tuning can transform a standard pretrained model into a specialized agricultural diagnostic tool. We provide a detailed account of our methodology, including the systematic unfreezing of terminal layers, implementation of batch normalization and dropout regularization and application of advanced training techniques. PlantDiseaseNet-RT50 represents a significant advancement in AI-driven agricultural tools, offering a computationally efficient solution for rapid and accurate plant disease diagnosis that can be readily implemented in practical farming contexts to support timely interventions and reduce crop losses.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.