Papers
Topics
Authors
Recent
2000 character limit reached

Adaptive-VoCo: Complexity-Aware Visual Token Compression for Vision-Language Models

Published 20 Dec 2025 in cs.CV | (2512.18496v1)

Abstract: In recent years, large-scale vision-LLMs (VLMs) have demonstrated remarkable performance on multimodal understanding and reasoning tasks. However, handling high-dimensional visual features often incurs substantial computational and memory costs. VoCo-LLaMA alleviates this issue by compressing visual patch tokens into a few VoCo tokens, reducing computational overhead while preserving strong cross-modal alignment. Nevertheless, such approaches typically adopt a fixed compression rate, limiting their ability to adapt to varying levels of visual complexity. To address this limitation, we propose Adaptive-VoCo, a framework that augments VoCo-LLaMA with a lightweight predictor for adaptive compression. This predictor dynamically selects an optimal compression rate by quantifying an image's visual complexity using statistical cues from the vision encoder, such as patch token entropy and attention map variance. Furthermore, we introduce a joint loss function that integrates rate regularization with complexity alignment. This enables the model to balance inference efficiency with representational capacity, particularly in challenging scenarios. Experimental results show that our method consistently outperforms fixed-rate baselines across multiple multimodal tasks, highlighting the potential of adaptive visual compression for creating more efficient and robust VLMs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.