Papers
Topics
Authors
Recent
2000 character limit reached

MCVI-SANet: A lightweight semi-supervised model for LAI and SPAD estimation of winter wheat under vegetation index saturation (2512.18344v1)

Published 20 Dec 2025 in cs.CV and cs.AI

Abstract: Vegetation index (VI) saturation during the dense canopy stage and limited ground-truth annotations of winter wheat constrain accurate estimation of LAI and SPAD. Existing VI-based and texture-driven machine learning methods exhibit limited feature expressiveness. In addition, deep learning baselines suffer from domain gaps and high data demands, which restrict their generalization. Therefore, this study proposes the Multi-Channel Vegetation Indices Saturation Aware Net (MCVI-SANet), a lightweight semi-supervised vision model. The model incorporates a newly designed Vegetation Index Saturation-Aware Block (VI-SABlock) for adaptive channel-spatial feature enhancement. It also integrates a VICReg-based semi-supervised strategy to further improve generalization. Datasets were partitioned using a vegetation height-informed strategy to maintain representativeness across growth stages. Experiments over 10 repeated runs demonstrate that MCVI-SANet achieves state-of-the-art accuracy. The model attains an average R2 of 0.8123 and RMSE of 0.4796 for LAI, and an average R2 of 0.6846 and RMSE of 2.4222 for SPAD. This performance surpasses the best-performing baselines, with improvements of 8.95% in average LAI R2 and 8.17% in average SPAD R2. Moreover, MCVI-SANet maintains high inference speed with only 0.10M parameters. Overall, the integration of semi-supervised learning with agronomic priors provides a promising approach for enhancing remote sensing-based precision agriculture.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.