Papers
Topics
Authors
Recent
2000 character limit reached

Re-Depth Anything: Test-Time Depth Refinement via Self-Supervised Re-lighting (2512.17908v1)

Published 19 Dec 2025 in cs.CV, cs.AI, and cs.LG

Abstract: Monocular depth estimation remains challenging as recent foundation models, such as Depth Anything V2 (DA-V2), struggle with real-world images that are far from the training distribution. We introduce Re-Depth Anything, a test-time self-supervision framework that bridges this domain gap by fusing DA-V2 with the powerful priors of large-scale 2D diffusion models. Our method performs label-free refinement directly on the input image by re-lighting predicted depth maps and augmenting the input. This re-synthesis method replaces classical photometric reconstruction by leveraging shape from shading (SfS) cues in a new, generative context with Score Distillation Sampling (SDS). To prevent optimization collapse, our framework employs a targeted optimization strategy: rather than optimizing depth directly or fine-tuning the full model, we freeze the encoder and only update intermediate embeddings while also fine-tuning the decoder. Across diverse benchmarks, Re-Depth Anything yields substantial gains in depth accuracy and realism over the DA-V2, showcasing new avenues for self-supervision by augmenting geometric reasoning.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.