Papers
Topics
Authors
Recent
2000 character limit reached

LumiCtrl : Learning Illuminant Prompts for Lighting Control in Personalized Text-to-Image Models

Published 19 Dec 2025 in cs.CV | (2512.17489v1)

Abstract: Current text-to-image (T2I) models have demonstrated remarkable progress in creative image generation, yet they still lack precise control over scene illuminants, which is a crucial factor for content designers aiming to manipulate the mood, atmosphere, and visual aesthetics of generated images. In this paper, we present an illuminant personalization method named LumiCtrl that learns an illuminant prompt given a single image of an object. LumiCtrl consists of three basic components: given an image of the object, our method applies (a) physics-based illuminant augmentation along the Planckian locus to create fine-tuning variants under standard illuminants; (b) edge-guided prompt disentanglement using a frozen ControlNet to ensure prompts focus on illumination rather than structure; and (c) a masked reconstruction loss that focuses learning on the foreground object while allowing the background to adapt contextually, enabling what we call contextual light adaptation. We qualitatively and quantitatively compare LumiCtrl against other T2I customization methods. The results show that our method achieves significantly better illuminant fidelity, aesthetic quality, and scene coherence compared to existing personalization baselines. A human preference study further confirms strong user preference for LumiCtrl outputs. The code and data will be released upon publication.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.