Beyond Semantic Features: Pixel-level Mapping for Generalized AI-Generated Image Detection (2512.17350v1)
Abstract: The rapid evolution of generative technologies necessitates reliable methods for detecting AI-generated images. A critical limitation of current detectors is their failure to generalize to images from unseen generative models, as they often overfit to source-specific semantic cues rather than learning universal generative artifacts. To overcome this, we introduce a simple yet remarkably effective pixel-level mapping pre-processing step to disrupt the pixel value distribution of images and break the fragile, non-essential semantic patterns that detectors commonly exploit as shortcuts. This forces the detector to focus on more fundamental and generalizable high-frequency traces inherent to the image generation process. Through comprehensive experiments on GAN and diffusion-based generators, we show that our approach significantly boosts the cross-generator performance of state-of-the-art detectors. Extensive analysis further verifies our hypothesis that the disruption of semantic cues is the key to generalization.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.