Verifiability-First Agents: Provable Observability and Lightweight Audit Agents for Controlling Autonomous LLM Systems (2512.17259v1)
Abstract: As LLM-based agents grow more autonomous and multi-modal, ensuring they remain controllable, auditable, and faithful to deployer intent becomes critical. Prior benchmarks measured the propensity for misaligned behavior and showed that agent personalities and tool access significantly influence misalignment. Building on these insights, we propose a Verifiability-First architecture that (1) integrates run-time attestations of agent actions using cryptographic and symbolic methods, (2) embeds lightweight Audit Agents that continuously verify intent versus behavior using constrained reasoning, and (3) enforces challenge-response attestation protocols for high-risk operations. We introduce OPERA (Observability, Provable Execution, Red-team, Attestation), a benchmark suite and evaluation protocol designed to measure (i) detectability of misalignment, (ii) time to detection under stealthy strategies, and (iii) resilience of verifiability mechanisms to adversarial prompt and persona injection. Our approach shifts the evaluation focus from how likely misalignment is to how quickly and reliably misalignment can be detected and remediated.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.