Papers
Topics
Authors
Recent
Search
2000 character limit reached

From Priors to Predictions: Explaining and Visualizing Human Reasoning in a Graph Neural Network Framework

Published 19 Dec 2025 in q-bio.NC and cs.AI | (2512.17255v1)

Abstract: Humans excel at solving novel reasoning problems from minimal exposure, guided by inductive biases, assumptions about which entities and relationships matter. Yet the computational form of these biases and their neural implementation remain poorly understood. We introduce a framework that combines Graph Theory and Graph Neural Networks (GNNs) to formalize inductive biases as explicit, manipulable priors over structure and abstraction. Using a human behavioral dataset adapted from the Abstraction and Reasoning Corpus (ARC), we show that differences in graph-based priors can explain individual differences in human solutions. Our method includes an optimization pipeline that searches over graph configurations, varying edge connectivity and node abstraction, and a visualization approach that identifies the computational graph, the subset of nodes and edges most critical to a model's prediction. Systematic ablation reveals how generalization depends on specific prior structures and internal processing, exposing why human like errors emerge from incorrect or incomplete priors. This work provides a principled, interpretable framework for modeling the representational assumptions and computational dynamics underlying generalization, offering new insights into human reasoning and a foundation for more human aligned AI systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.