Papers
Topics
Authors
Recent
2000 character limit reached

Value Under Ignorance in Universal Artificial Intelligence (2512.17086v1)

Published 18 Dec 2025 in cs.AI

Abstract: We generalize the AIXI reinforcement learning agent to admit a wider class of utility functions. Assigning a utility to each possible interaction history forces us to confront the ambiguity that some hypotheses in the agent's belief distribution only predict a finite prefix of the history, which is sometimes interpreted as implying a chance of death equal to a quantity called the semimeasure loss. This death interpretation suggests one way to assign utilities to such history prefixes. We argue that it is as natural to view the belief distributions as imprecise probability distributions, with the semimeasure loss as total ignorance. This motivates us to consider the consequences of computing expected utilities with Choquet integrals from imprecise probability theory, including an investigation of their computability level. We recover the standard recursive value function as a special case. However, our most general expected utilities under the death interpretation cannot be characterized as such Choquet integrals.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube