Papers
Topics
Authors
Recent
2000 character limit reached

Knowledge Distillation with Structured Chain-of-Thought for Text-to-SQL

Published 18 Dec 2025 in cs.CL, cs.AI, and cs.DB | (2512.17053v1)

Abstract: Deploying accurate Text-to-SQL systems at the enterprise level faces a difficult trilemma involving cost, security and performance. Current solutions force enterprises to choose between expensive, proprietary LLMs and low-performing Small LLMs (SLMs). Efforts to improve SLMs often rely on distilling reasoning from large LLMs using unstructured Chain-of-Thought (CoT) traces, a process that remains inherently ambiguous. Instead, we hypothesize that a formal, structured reasoning representation provides a clearer, more reliable teaching signal, as the Text-to-SQL task requires explicit and precise logical steps. To evaluate this hypothesis, we propose Struct-SQL, a novel Knowledge Distillation (KD) framework that trains an SLM to emulate a powerful large LLM. Consequently, we adopt a query execution plan as a formal blueprint to derive this structured reasoning. Our SLM, distilled with structured CoT, achieves an absolute improvement of 8.1% over an unstructured CoT distillation baseline. A detailed error analysis reveals that a key factor in this gain is a marked reduction in syntactic errors. This demonstrates that teaching a model to reason using a structured logical blueprint is beneficial for reliable SQL generation in SLMs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.