Papers
Topics
Authors
Recent
2000 character limit reached

From Facts to Conclusions : Integrating Deductive Reasoning in Retrieval-Augmented LLMs (2512.16795v1)

Published 18 Dec 2025 in cs.CL, cs.AI, cs.CY, and cs.IR

Abstract: Retrieval-Augmented Generation (RAG) grounds LLMs in external evidence, but fails when retrieved sources conflict or contain outdated or subjective information. Prior work address these issues independently but lack unified reasoning supervision. We propose a reasoning-trace-augmented RAG framework that adds structured, interpretable reasoning across three stages : (1) document-level adjudication, (2) conflict analysis, and (3) grounded synthesis, producing citation-linked answers or justified refusals. A Conflict-Aware Trust-Score (CATS) pipeline is introduced which evaluates groundedness, factual correctness, refusal accuracy, and conflict-behavior alignment using an LLM-as-a-Judge. Our 539-query reasoning dataset and evaluation pipeline establish a foundation for conflict-aware, interpretable RAG systems. Experimental results demonstrate substantial gains over baselines, most notably with Qwen, where Supervised Fine-Tuning improved End-to-End answer correctness from 0.069 to 0.883 and behavioral adherence from 0.074 to 0.722.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.