Papers
Topics
Authors
Recent
2000 character limit reached

CountZES: Counting via Zero-Shot Exemplar Selection (2512.16415v1)

Published 18 Dec 2025 in cs.CV

Abstract: Object counting in complex scenes remains challenging, particularly in the zero-shot setting, where the goal is to count instances of unseen categories specified only by a class name. Existing zero-shot object counting (ZOC) methods that infer exemplars from text either rely on open-vocabulary detectors, which often yield multi-instance candidates, or on random patch sampling, which fails to accurately delineate object instances. To address this, we propose CountZES, a training-free framework for object counting via zero-shot exemplar selection. CountZES progressively discovers diverse exemplars through three synergistic stages: Detection-Anchored Exemplar (DAE), Density-Guided Exemplar (DGE), and Feature-Consensus Exemplar (FCE). DAE refines open-vocabulary detections to isolate precise single-instance exemplars. DGE introduces a density-driven, self-supervised paradigm to identify statistically consistent and semantically compact exemplars, while FCE reinforces visual coherence through feature-space clustering. Together, these stages yield a diverse, complementary exemplar set that balances textual grounding, count consistency, and feature representativeness. Experiments on diverse datasets demonstrate CountZES superior performance among ZOC methods while generalizing effectively across natural, aerial and medical domains.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.