Papers
Topics
Authors
Recent
2000 character limit reached

MACL: Multi-Label Adaptive Contrastive Learning Loss for Remote Sensing Image Retrieval (2512.16294v1)

Published 18 Dec 2025 in cs.CV

Abstract: Semantic overlap among land-cover categories, highly imbalanced label distributions, and complex inter-class co-occurrence patterns constitute significant challenges for multi-label remote-sensing image retrieval. In this article, Multi-Label Adaptive Contrastive Learning (MACL) is introduced as an extension of contrastive learning to address them. It integrates label-aware sampling, frequency-sensitive weighting, and dynamic-temperature scaling to achieve balanced representation learning across both common and rare categories. Extensive experiments on three benchmark datasets (DLRSD, ML-AID, and WHDLD), show that MACL consistently outperforms contrastive-loss based baselines, effectively mitigating semantic imbalance and delivering more reliable retrieval performance in large-scale remote-sensing archives. Code, pretrained models, and evaluation scripts will be released at https://github.com/amna/MACL upon acceptance.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.