CKA-Guided Modular Quantization: Beyond Bit-Width to Algorithmic Diversity (2512.16282v1)
Abstract: Current mainstream post-training quantization methods for LLMs typically apply a uniform quantization strategy across all network layers, overlooking the substantial differences in algorithmic suitability among layers. To address this limitation, we propose CKA Guided Modular Quantization, a fine-tuning-free, plug-and-play framework for algorithmic heterogeneous quantization. Our method independently evaluates multiple PTQ algorithms on each layer and employs Linear Centered Kernel Alignment (CKA) as a metric to automatically select the optimal quantization strategy per layer. The individually optimized strategies are then integrated to construct a hybrid quantized model. Experiments demonstrate that our approach consistently outperforms both uniform quantization baselines and state-of-the-art mixed-precision methods across mainstream LLMs including LLaMA and Qwen ,in terms of perplexity (PPL) and downstream task performance.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.