Papers
Topics
Authors
Recent
2000 character limit reached

Autoencoder-based Denoising Defense against Adversarial Attacks on Object Detection (2512.16123v1)

Published 18 Dec 2025 in cs.CR, cs.AI, and cs.CV

Abstract: Deep learning-based object detection models play a critical role in real-world applications such as autonomous driving and security surveillance systems, yet they remain vulnerable to adversarial examples. In this work, we propose an autoencoder-based denoising defense to recover object detection performance degraded by adversarial perturbations. We conduct adversarial attacks using Perlin noise on vehicle-related images from the COCO dataset, apply a single-layer convolutional autoencoder to remove the perturbations, and evaluate detection performance using YOLOv5. Our experiments demonstrate that adversarial attacks reduce bbox mAP from 0.2890 to 0.1640, representing a 43.3% performance degradation. After applying the proposed autoencoder defense, bbox mAP improves to 0.1700 (3.7% recovery) and bbox mAP@50 increases from 0.2780 to 0.3080 (10.8% improvement). These results indicate that autoencoder-based denoising can provide partial defense against adversarial attacks without requiring model retraining.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.