In-Context Multi-Operator Learning with DeepOSets
Abstract: In-context Learning (ICL) is the remarkable capability displayed by some machine learning models to learn from examples in a prompt, without any further weight updates. ICL had originally been thought to emerge from the self-attention mechanism in autoregressive transformer architectures. DeepOSets is a non-autoregressive, non-attention based neural architecture that combines set learning via the DeepSets architecture with operator learning via Deep Operator Networks (DeepONets). In a previous study, DeepOSets was shown to display ICL capabilities in supervised learning problems. In this paper, we show that the DeepOSets architecture, with the appropriate modifications, is a multi-operator in-context learner that can recover the solution operator of a new PDE, not seen during training, from example pairs of parameter and solution placed in a user prompt, without any weight updates. Furthermore, we show that DeepOSets is a universal uniform approximator over a class of continuous operators, which we believe is the first result of its kind in the literature of scientific machine learning. This means that a single DeepOSets architecture exists that approximates in-context any continuous operator in the class to any fixed desired degree accuracy, given an appropriate number of examples in the prompt. Experiments with Poisson and reaction-diffusion forward and inverse boundary-value problems demonstrate the ability of the proposed model to use in-context examples to predict accurately the solutions corresponding to parameter queries for PDEs not seen during training.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.