Papers
Topics
Authors
Recent
Search
2000 character limit reached

In-Context Semi-Supervised Learning

Published 17 Dec 2025 in cs.LG | (2512.15934v1)

Abstract: There has been significant recent interest in understanding the capacity of Transformers for in-context learning (ICL), yet most theory focuses on supervised settings with explicitly labeled pairs. In practice, Transformers often perform well even when labels are sparse or absent, suggesting crucial structure within unlabeled contextual demonstrations. We introduce and study in-context semi-supervised learning (IC-SSL), where a small set of labeled examples is accompanied by many unlabeled points, and show that Transformers can leverage the unlabeled context to learn a robust, context-dependent representation. This representation enables accurate predictions and markedly improves performance in low-label regimes, offering foundational insights into how Transformers exploit unlabeled context for representation learning within the ICL framework.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.