Papers
Topics
Authors
Recent
2000 character limit reached

Solvable Quantum Circuits from Spacetime Lattices (2512.15871v1)

Published 17 Dec 2025 in quant-ph, cond-mat.stat-mech, and nlin.SI

Abstract: In recent years dual-unitary circuits and their multi-unitary generalizations have emerged as exactly solvable yet chaotic models of quantum many-body dynamics. However, a systematic picture for the solvability of multi-unitary dynamics remains missing. We present a framework encompassing a large class of such non-integrable models with exactly solvable dynamics, which we term \emph{completely reducible} circuits. In these circuits, the entanglement membrane determining operator growth and entanglement dynamics can be characterized analytically. Completely reducible circuits extend the notion of space-time symmetry to more general lattice geometries, breaking dual-unitarity globally but not locally, and allow for a rich phenomenology going beyond dual-unitarity. As example, we introduce circuits that support four and five directions of information flow. We derive a general expression for the entanglement line tension in terms of the pattern of information flow in spacetime. The solvability is shown to be related to the absence of knots of this information flow, connecting entanglement dynamics to the Kauffman bracket as knot invariant. Building on these results, we propose that in general non-integrable dynamics the curvature of the entanglement line tension can be interpreted as a density of information transport. Our results provide a new and unified framework for exactly solvable models of many-body quantum chaos, encompassing and extending known constructions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 12 likes about this paper.