Papers
Topics
Authors
Recent
2000 character limit reached

Empirical Investigation of the Impact of Phase Information on Fault Diagnosis of Rotating Machinery

Published 17 Dec 2025 in cs.LG, cs.AI, and eess.SP | (2512.15344v1)

Abstract: Predictive maintenance of rotating machinery increasingly relies on vibration signals, yet most learning-based approaches either discard phase during spectral feature extraction or use raw time-waveforms without explicitly leveraging phase information. This paper introduces two phase-aware preprocessing strategies to address random phase variations in multi-axis vibration data: (1) three-axis independent phase adjustment that aligns each axis individually to zero phase (2) single-axis reference phase adjustment that preserves inter-axis relationships by applying uniform time shifts. Using a newly constructed rotor dataset acquired with a synchronized three-axis sensor, we evaluate six deep learning architectures under a two-stage learning framework. Results demonstrate architecture-independent improvements: the three-axis independent method achieves consistent gains (+2.7\% for Transformer), while the single-axis reference approach delivers superior performance with up to 96.2\% accuracy (+5.4\%) by preserving spatial phase relationships. These findings establish both phase alignment strategies as practical and scalable enhancements for predictive maintenance systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.