Papers
Topics
Authors
Recent
2000 character limit reached

SASQ: Static Activation Scaling for Quantization-Aware Training in Large Language Models (2512.14481v1)

Published 16 Dec 2025 in cs.CL and cs.AI

Abstract: LLMs excel at natural language tasks but face deployment challenges due to their growing size outpacing GPU memory advancements. Model quantization mitigates this issue by lowering weight and activation precision, but existing solutions face fundamental trade-offs: dynamic quantization incurs high computational overhead and poses deployment challenges on edge devices, while static quantization sacrifices accuracy. Existing approaches of quantization-aware training (QAT) further suffer from weight training costs. We propose SASQ: a lightweight QAT framework specifically tailored for activation quantization factors. SASQ exclusively optimizes only the quantization factors (without changing pre-trained weights), enabling static inference with high accuracy while maintaining deployment efficiency. SASQ adaptively truncates some outliers, thereby reducing the difficulty of quantization while preserving the distributional characteristics of the activations. SASQ not only surpasses existing SOTA quantization schemes but also outperforms the corresponding FP16 models. On LLaMA2-7B, it achieves 5.2% lower perplexity than QuaRot and 4.7% lower perplexity than the FP16 model on WikiText2.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube