Papers
Topics
Authors
Recent
2000 character limit reached

PortAgent: LLM-driven Vehicle Dispatching Agent for Port Terminals (2512.14417v1)

Published 16 Dec 2025 in cs.AI

Abstract: Vehicle Dispatching Systems (VDSs) are critical to the operational efficiency of Automated Container Terminals (ACTs). However, their widespread commercialization is hindered due to their low transferability across diverse terminals. This transferability challenge stems from three limitations: high reliance on port operational specialists, a high demand for terminal-specific data, and time-consuming manual deployment processes. Leveraging the emergence of LLMs, this paper proposes PortAgent, an LLM-driven vehicle dispatching agent that fully automates the VDS transferring workflow. It bears three features: (1) no need for port operations specialists; (2) low need of data; and (3) fast deployment. Specifically, specialist dependency is eliminated by the Virtual Expert Team (VET). The VET collaborates with four virtual experts, including a Knowledge Retriever, Modeler, Coder, and Debugger, to emulate a human expert team for the VDS transferring workflow. These experts specialize in the domain of terminal VDS via a few-shot example learning approach. Through this approach, the experts are able to learn VDS-domain knowledge from a few VDS examples. These examples are retrieved via a Retrieval-Augmented Generation (RAG) mechanism, mitigating the high demand for terminal-specific data. Furthermore, an automatic VDS design workflow is established among these experts to avoid extra manual interventions. In this workflow, a self-correction loop inspired by the LLM Reflexion framework is created

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.