Papers
Topics
Authors
Recent
2000 character limit reached

Trunc-Opt vine building algorithms (2512.14399v1)

Published 16 Dec 2025 in stat.ME, stat.CO, and stat.ML

Abstract: Vine copula models have become highly popular and practical tools for modelling multivariate probability distributions due to their flexibility in modelling different kinds of dependences between the random variables involved. However, their flexibility comes with the drawback of a high-dimensional parameter space. To tackle this problem, truncated vine copulas were introduced by Kurowicka (2010) (Gaussian case) and Brechmann and Czado (2013) (general case). Truncated vine copulas contain conditionally independent pair copulas after the truncation level. So far, in the general case, truncated vine constructing algorithms started from the lowest tree in order to encode the largest dependences in the lower trees. The novelty of this paper starts from the observation that a truncated vine is determined by the first tree after the truncation level (see Kovács and Szántai (2017)). This paper introduces a new score for fitting truncated vines to given data, called the Weight of the truncated vine. Then we propose a completely new methodology for constructing truncated vines. We prove theorems which motivate this new approach. While earlier algorithms did not use conditional independences, we give algorithms for constructing and encoding truncated vines which do exploit them. Finally, we illustrate the algorithms on real datasets and compare the results with well-known methods included in R packages. Our method generally compare favorably to previously known methods.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 6 likes about this paper.